Study of variations in solar activity parameters has its importance in understanding the underlying mechanisms of space weather phenomena and space climate variability. We have used the already observed data of solar parameters viz. sunspot numbers, F10.7 cm index and Lyman alpha index recorded for last seventy years (1947–2017).

We have applied the Hodrick Prescott filtering method to bifurcate each time series into cyclic and trend parts. The cyclic part of each time series was used to analyse the persistence while the trend part was used to obtain the input data for the study of future predictions. Further, the cyclic component of each parameter was analysed by using the rescaled range analysis and the value of Hurst exponent was obtained for sunspot numbers, F10.7 cm index and Lyman alpha index as 0.90, 0.93 and 0.96 respectively. By using the simplex projection analysis on the values of amplitude and phase of the trend component of each time series, we have reconstructed the future time series representing solar cycles 25 and 26.

When extrapolated further in time, the reconstructed series provided the maximum values of sunspot numbers as 89 ± 9 and 78 ± 7 ; maximum values of F10.7 cm index were 124 ± 11 and 118 ± 9 and Lyman alpha index were 4.61 ± 0.08 and 4.41 ± 0.08 respectively for solar cycles 25 and 26. In our analysis we have found that the solar cycle 25 will start in the year 2021 (January) and will last till 2031 (February) with its maxima in year 2024 (February) while the solar cycle 26 will start in the year 2031 (March) with its maxima in 2036 (June) and will last till the year 2041 (February).

We have also compared the activities of solar cycles 5 and 6 (Dalton minima periods) to solar cycles 25 and 26 and have observed that the other solar minimum is underway.

Source: A. K. Singh and Asheesh Bhargawa, Astrophysics and Space Science (abstract found on Springer Link)